Journal or Publishing Institution: European Environment Agency
Author(s): Eastham, K. and Sweet, J.
Article Type: Book
Record ID: 587
Summary: In 2000 the EEA established a special project for the European Parliament, on the dissemination of research results from technologies characterised by scientific complexity and uncertainty, such as GMOs and chemicals, and on the use of such results by the public and their representatives in their governance, including the use of the precautionary principle. This project is in support of the EEA duty, added to its regulation in 1999, to ‘assist the Commission in the diffusion of information on the results of relevant environmental research’. In order to access European scientific expertise and to minimise duplication, the EEA established a partnership with the European Science Foundation to bring together relevant scientific evidence. This is the first report from the project. Other reports will summarise monitoring programmes and exposure data for some representative chemicals,and the use of consensus conferences and other methods for involving the public in complex scientific issues. The project will support the EEA in its work of helping to develop appropriate monitoring and data sources on the impacts of complex economic/ environment interactions. The European Science Foundation (ESF) had already established a research programme, ‘Assessing the Impact of GM Plants’ in 1999. This AIGM programme brings together researchers and other scientists from 10 European countries involved in assessing the environmental and agronomic impact of GM crops, including studies of gene flow and dispersal through pollen, hybridisation and gene introgression. The AIGM programme was invited by the ESF to produce a review of pollen mediated transgene flow based on recent research by participants in the AIGM programme as well as from published reports and papers. (The AIGM programme is briefly described in the appendix). This report considers the significance of pollen-mediated gene flow from six major crop types that have been genetically modified and are close to commercial release in the European Union. Oilseed rape, sugar beet, potatoes, maize, wheat and barley are reviewed in detail using recent and current research findings to assess their potential environmental and agronomic impacts. There is also a short review on the current status of GM fruit crops in Europe. Each crop type considered has its own distinctive characteristics of pollen production, dispersal and potential outcrossing, giving varying levels of gene flow. Oilseed rape can be described as a high-risk crop for crop-to-crop gene flow and from crop to wild relatives. At the farm scale low levels of gene flow will occur at long distances and thus complete genetic isolation will be difficult to maintain. This particularly applies to varieties and lines containing male sterile components, which will outcross with neighbouring fully fertile GM oilseed rape at higher frequencies and at greater distances than traditional varieties. Gene stacking in B. napus has been observed in crops and it is predicted that plants carrying multiple resistance genes will become common post-GM release and consequently GM volunteers may require different herbicide management. Oilseed rape is crosscompatible with a number of wild relatives and thus the likelihood of gene flow to these species is high. Sugar beet can be described as medium to high risk for gene flow from crop to crop and from crop to wild relatives. Pollen from sugar beet has been recorded at distances of more than 1 km at relatively high frequencies. Cross-pollination in root crops is not usually considered an issue since the crop is harvested before flowering. However a small proportion of plants in a crop will bolt and transgene movement between crops may occur in this way. Hybridisation and introgression between cultivated beet and wild sea beet has been shown to occur. Potatoes can be described as a low risk crop for gene flow from crop to crop and from crop to wild relatives. Cross-pollination between production crops is not usually considered an issue since the harvested tuber is not affected by incoming pollen. In true seed production areas, however, the likelihood of cross-pollination between adjacent crops leading to contamination is higher. The risk of gene flow exists if volunteers are allowed to persist in a field from one crop to the next. Naturally occurring hybridisation and introgression between potato and its related wild species in Europe is unlikely. Maize can be described as a medium to high-risk crop for gene flow from crop to crop. Evidence suggests that GM maize plants would cross-pollinate non-GM maize plants up to and beyond their recommended isolation distance of 200 m. There are no known wild relatives in Europe with which maize can hybridise. Wheat can be described as a low risk crop for gene flow from crop to crop and from crop to wild relatives. Cross-pollination under field conditions normally involves less than 2 % of all florets so any outcrossing usually occurs with adjacent plants. Hybrids formed between wheat and several wild barley and grass species generally appear to be restricted to the first generation with little evidence for subsequent introgression due to sterility. Barley can be described as a low risk crop for gene flow from crop to crop and from crop to wild relatives. Barley reproduces almost entirely by self-fertilisation, producing small amounts of pollen so that most outcrossing occurs between closely adjacent plants. There are no records of naturally occurring hybrids between barley and any wild relatives in Europe. Some fruit crops, such as strawberry, apple, grapevine and plum have outcrossing and hybridisation tendencies which suggest that gene flow from GM crops to other crops and to wild relatives is likely to occur. For raspberry, blackberry and blackcurrant the likelihood of gene flow is less easy to predict, partly due to lack of available information. At present none of these crops has pollen which can be completely contained. This means that the movement of seed and pollen will have to be measured and managed much more in the future. Management systems such as spatial and temporal isolation can be used to minimise direct gene flow between crops, and to minimise seed bank and volunteer populations. The use of isolation zones, crop barrier rows and other vegetation barriers between pollen source and recipient crops can reduce pollen dispersal, although changing weather and environmental conditions mean that some long distance pollen dispersal will occur. Biological containment measures are being developed that require research in order to determine whether plant reproduction can be controlled to inhibit gene flow through pollen and/or seed. The possible implications of hybridisation and introgression between crops and wild plant species are so far unclear because it is difficult to predict how the genetically engineered genes will be expressed in a related wild species. The fitness of wild plant species containing introgressed genes from a GM crop will depend on many factors involving both the genes introgressed and the recipient ecosystem. While it is important to determine frequencies of hybridisation between crops and wild relatives, it is more important to determine whether genes will be introgressed into wild populations and establish at levels which will have a significant ecological impact.
Citation: Eastham, K. and Sweet, J., 2002. Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer (pp. 1-74). Copenhagen: European Environment Agency.