Journal or Publishing Institution: Nature Biotechnology
Date of Publication: 01/01/2011
Author(s): Acevedo, F., Huerta, E., Burgeff, C., Koleff, P., and Sarukhán, J.
Article Type: Journal Publication
Abstract:
To the editor: In the past three years, substantial progress has been made in updating knowledge on the present diversity of maize landraces and where these are still being grown within the Mexican territory. Here, we summarize some of these findings and briefly discuss their implications in relation to maize production and use in Mexico.
The term landrace was first described by Anderson and Cutler1 as “a group of related individuals with enough characteristics in common to permit their recognition as a group.” It refers to the varieties and populations of native maize in Mexico and has helped in the study of the genetic diversity of the crop.
As part of the implementation of the Biosafety Law—legislation that passed in March 2005 requiring the definition of both the areas of origin for crops native to Mexico and their genetic diversity—the Mexican government has been carrying out a survey of maize landraces since 2006. The program was financed with $1.5 million from the Ministry of Agriculture, Livestock, Rural Development, Fishery and Food (SAGARPA), the Ministry of Environment and Natural Resources (SEMARNAT) and the Inter-Ministerial Commission for Biosafety of Genetically Modified Organisms (CIBIOGEM).
Some of the key findings of this survey are as follows (for one of the results already published in Spanish, see http://www.biodiversidad.gob.mx/genes/origenDiv.html and ref. 2): first, a large number of maize landraces are currently being cultivated very widely in Mexico; second, diversity in maize landraces under cultivation is superior to what was originally believed to exist before the study started (in particular for the northern states of Mexico); and third, probable new maize landraces have been identified, diversity is higher than previously appreciated within landraces (such as Tuxpeño, which is the number-one provider of germplasm to most of the maize known in commercial breeding), and new teocintle (the most probable progenitor of maize) populations have been identified.
Maize genetic diversity exists as a result of the activities of small farm-holders (their plots currently represent 86% of the area where maize is cultivated in Mexico), who generally plant maize for subsistence3 and depending on rainfall, permanently experiment and exchange seeds, and have designated many uses for the different variants cultivated4, 5. It is because of these traditional agricultural practices that Mexico preserves and enhances the many different maize landraces we now know6, 7.
The new data acquired about the present number and distribution of maize landraces underline, on the one hand, the richness of genetic diversity of cultivars and, on the other, the reasons Mexico has for valuing and maintaining that diversity for future breeding needs. It is thus important that the very process by which those landraces are generated and maintained (that is, the practices of the small farmers) is preserved.
Currently there is no commercial production of transgenic maize in Mexico; only experimental trials have been approved. The question has been raised as to how Mexico will manage the commercialization of transgenic maize together with meeting its responsibility of safeguarding the characteristics of the genetic diversity that has been revealed in the recent study. Much debate, some of it scientifically based, has taken place about the risks and benefits of allowing experimental trials of transgenic maize in a center of genetic diversity for the same crop. It is our opinion that some relevant questions about the potential impacts of transgenic maize on landraces have not been addressed either in these discussions or by experiments. For example, further experimental work is required to establish the potential for gene flow from transgenic maize to landraces, measures for managing this gene flow and the potential long-term impact of gene flow on landraces.
If gene flow from transgenic maize to landraces occurs, several other questions arise. How will intellectual property issues interact with the biological, social and economic reality of small-farmer agricultural practices that maintain and keep generating new variability in maize landraces in Mexico? What are the practical consequences for a small subsistence farmer cultivating native landraces of maize and finding his crops contain genes from transgenic plants? What is the legal position of such a farmer and is he/she likely to be infringing patents by cultivating or exchanging (knowingly or not) seeds that contain transgenes? What would be the stance of agbiotech companies in pursuing their intellectual property and licenses in such situations? Such questions need to be considered both at the small rural community level and nationally.
There is also the broader issue of the extent to which introduction of transgenic maize will provide solutions to existing problems for Mexican agriculture, such as the migration of male peasants (especially young people) to cities and abroad, an increasingly older rural population, the absence of effective mechanisms and incentives to cultivate maize landraces in a certified manner, weak market and grain distribution arrangements, and increasingly dominant patterns of food consumption based on foreign models of fast foods.
Mexico does not yet have in place a working and efficient mechanism for monitoring cross-pollination and gene flow under local agricultural conditions, despite claims that this is being instituted8. Information is lacking on the value that transgenic maize has for Mexican farming systems and its management requirements. Meanwhile, illegal transgenic maize introductions have been documented, and in some cases prosecuted, in Mexico. Moreover, there are concerns about the introduction of transgenic maize developed for pharmaceutical or other non-food purposes, and its impact on landraces9, 10.
Mexico needs to be able to define what kind of transgenic materials (for maize and any other relevant crop) it needs for its ecological, social and economic requirements. This responsibility must be carefully analyzed in order to provide farmers with adequate and necessary elements to help achieve a level of food security for the present and future of Mexican society, while conserving genetic diversity and helping develop adequately the social structures of the rural economy and society.
Keywords: genetically modified (GM) maize, genetically modified (GM) corn, genetically engineered (GE), GMO, Mexico, landrace, transgenic crops
Citation:
Acevedo, F., Huerta, E., Burgeff, C., Koleff, P., and Sarukhán, J., 2011. Is transgenic maize what Mexico really needs? Nature Biotechnology, 29(1), 23-24.
Category:
- Regulatory issues
Record ID: 7